Clique Partition Numbers of Boolean Function Graphs $B(K_p, L(G), INC, NINC)$ and $B(K_p, L(G), INC, NINC)$

*S. Muthammai1 and R.Mahalakshmi2

1Government Arts and Science College, Kadaladi, Ramanathapuram – 623703.

2Government Arts College for Women (Autonomous), Pudukkottai – 622001.

Email: muthammai.sivakami@gmail.com, mahabarath2013@gmail.com

Abstract: A clique in a graph G is a complete subgraph of G. A clique partition of G is a collection C of cliques such that each edge of G occurs in exactly one clique in C. The clique partition number $cp(G)$ is the minimum size of a clique partition of G. In this paper upper bounds for the clique partition number of the Boolean function graphs $BF_2(G)$ and $BF_3(G)$ for some standard graphs are obtained.

Keyword: Boolean Function Graph, clique, clique partition.

1. Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A clique partition of G is a collection C of cliques such that each edge of G occurs in exactly one clique in C. The clique partition number $cp(G)$ is the minimum size of a clique partition of G. The Line graphs, Middle graphs, Total graphs and Quasi-total graphs are very much useful in computer networks.

Whitney[16] introduced the concept of the line graph $L(G)$ of a given graph G in 1932. The first characterization of line graph is due to Krausz. The Middle graph $M(G)$ of a graph G was introduced by Hamada and Yoshimura [5]. Characterizations were presented for middle graphs of any graph, tree and complete graphs in [1]. The concept of total graphs was introduced by Behzad [2] in 1966. Sastry and Raju [15] introduced the concept of quasi-total graphs and they solved the graph equations for line graphs, middle graphs, total graphs and quasi-total graphs. This motivates us to define and study other graph operations.

The points and Lines of a graph are called its elements. Two elements of a graph are neighbors if they are either incident or adjacent. The total graph $T(G)$ of G has vertex set $V(G) \cup E(G)$ and vertices of $T(G)$ are adjacent whenever they are neighbors in G. The quasi-total graph [9] $P(G)$ of G is a graph with vertex set as that of $T(G)$ and two vertices are adjacent if and only if they correspond to two nonadjacent vertices of G or to two adjacent edges of G or to a vertex and an edge incident with it in G. The middle graph $M(G)$ of G is the one whose vertex set is as that of $T(G)$ and two vertices are adjacent in $M(G)$ whenever either they are adjacent edges of G or one is a vertex of G and the other is an edges of G incident with it. Clearly, $E(M(G)) = E(T(G)) – E(G)$.
The corona \(G_1 \circ G_2 \) of two graphs \(G_1 \) and \(G_2 \) is the graph obtained by taking one copy of \(G_1 \) of order \(n \) and \(n \) copies of \(G_2 \), and then joining the \(i^{th} \) vertex of \(G_1 \) to every vertex in the \(i^{th} \) copy of \(G_2 \).

For any graph \(G \), let \(V(G) \) and \(E(G) \) denote the vertex set and edge set of \(G \) respectively. The Boolean function graph \(B(K_p, L(G), INC, NINC) \) of \(G \) is a graph with vertex set \(V(G) \cup E(G) \) and two vertices in \(B(K_p, L(G), INC, NINC) \) are adjacent if and only if they correspond to two non-adjacent edges of \(G \) or to a vertex and an edge incident to it in \(G \), or to a vertex and an edge not incident to it in \(G \), where \(L(G) \) is the line graph of \(G \). For brevity, this graph is denoted by \(BF_2(G) \).

For any graph \(G \), let \(V(G) \) and \(E(G) \) denote the vertex set and edge set of \(G \) respectively. The Boolean function graph \(B(K_p, L(G), INC, NINC) \) of \(G \) is a graph with vertex set \(V(G) \cup E(G) \) and two vertices in \(B(K_p, L(G), INC, NINC) \) are adjacent if and only if they correspond to two adjacent edges of \(G \) or to a vertex and an edge incident to it in \(G \), or to a vertex and an edge not incident to it in \(G \), where \(L(G) \) is the line graph of \(G \). For brevity, this graph is denoted by \(BF_3(G) \).

In this paper, upper bounds for the clique partition numbers of the Boolean function graph \(BF_2(G) \) and \(BF_3(G) \) for some standard graphs are obtained. For unexplained terminology and notations, [4] is referred.

2. Clique partition of \(BF_2(G) \)

In the following, clique partition number of path, cycle, star and wheel graphs are found.

Theorem 2.1:

For the path \(P_n \) on \(n \) vertices \((n \geq 6) \), \(cp(BF_2(P_n)) = \begin{cases} \frac{3n^2 + 2n - 1}{4} & \text{if } n \text{ is odd.} \\ \frac{3n^2 + 2n}{4} & \text{if } n \text{ is even.} \end{cases} \)

Proof:

Let \(v_1, v_2, v_3, \ldots, v_n \) be the vertices and \(e_1, e_2, \ldots, e_{n-1} \) be the edges of \(P_n \), where \(e_i = (v_i, v_{i+1}) \), \((1 \leq i \leq n - 1)\). Then \(v_1, v_2, v_3, \ldots, v_n, e_1, e_2, \ldots, e_{n-1} \in V(BF_2(P_n)) \), \(|V(BF_2(P_n))| = 2n - 1 \) and \(|E(BF_2(P_n))| = |E(L(P_n))| + n(n - 1) \)

\[
= \frac{(n - 1)(n - 2)}{2} - (n - 2) + n(n - 1)
= \frac{3n^2 - 7n + 6}{2}.
\]

The clique number of \(BF_2(P_n) \) is \(\frac{n}{2} \).
E(BF_2(P_n)) = E(\overline{L(P_n)}) \cup F, \text{ where } F = \bigcup_{i=1}^{n-1} \bigcup_j \{ v_i, e_j \}; |F| = n(n-1).

Case 1: n is odd

The edge set of BF_2(P_n) is decomposed into K_{\frac{n-1}{2}}, K_3 and K_{\frac{\sqrt{n}}{2}}s. Vertex sets of K_{\frac{n-1}{2}} are listed as elements of the sets A_1 and A_2, where A_1 = \{ e_1, e_3, \ldots, e_{n-2} \}; A_2 = \{ e_2, e_4, \ldots, e_{n-1} \}. Vertex sets of K_3s are given by A_3 = \{ (v_i, e_i, e_{i+2}) \}, \text{ for each } i, 1 \leq i \leq \frac{n-3}{2}, \quad < A_1 > \cong < A_2 > \cong \frac{n-3}{2} K_3.

A_4 = \bigcup_{i=1}^{\frac{n-1}{2}} B_i, \text{ where } B_1 = \{ (v_i, e_i, e_{i+3}) \}, i = 2, 3, \ldots, n - 4; B_2 = \{ (v_i, e_i, e_{i+5}) \}, i = 2, 3, \ldots, n - 6; B_3 = \{ (v_i, e_i, e_{i+7}) \}, i = 2, 3, \ldots, n - 8; \ldots, B_{\frac{n-1}{2}} = \{ (v_{n-3}, e_i, e_{i+11}) \}, i = 2, 3 \}\text{ and hence} < A_4 > \cong \frac{n^2 - 8n + 15}{4} K_3.

These cover all the edges of \overline{L(P_n)} and \frac{n^2 - 6n + 9}{2} edges of F. The remaining \frac{n^2 + 4n - 9}{2} edges of F are covered by K_{\frac{\sqrt{n}}{2}}s.

Therefore, BF_2(P_n) = 2 K_{\frac{n-1}{2}} \bigcup \left(\frac{n^2 - 6n + 9}{4} \right) K_3 \bigcup \left(\frac{n^2 + 4n - 9}{2} \right) K_2 \text{ and hence}

cp(BF_2(P_n)) = 2 + \left(\frac{n^2 - 6n + 9}{4} \right) + \left(\frac{n^2 + 4n - 9}{2} \right) = \frac{3n^2 + 2n - 1}{4}.

Case 2: n is even

The edge set of BF_2(P_n) is decomposed into K_{\frac{n}{2}}, K_{\frac{n-2}{2}}, K_3 and K_{\frac{\sqrt{n}}{2}}s. Vertex sets of K_{\frac{n}{2}}, K_{\frac{n-2}{2}} are listed as elements of the sets C_1 and C_2. C_1 = \{ e_1, e_3, \ldots, e_{n-1} \}; C_2 = \{ e_2, e_4, \ldots, e_{n-2} \} and < C_1 > \cong \frac{n}{2} K_3, < C_2 > \cong \frac{n-2}{2} K_3. Vertex sets of K_3s are given by C_3 = \bigcup_{i=1}^{\frac{n-3}{2}} D_i, \text{ where } D_1 = \{ (v_i, e_i, e_{i+3}) \}, i = 1, 2, 3, \ldots, n - 4; D_2 = \{ (v_i, e_i, e_{i+5}) \}, i = 1, 2, 3, \ldots, n - 6; \ldots, D_{\frac{n-3}{2}} = \{ (v_{n-4}, e_{i+11}) \}, i = 2, 3 \}. Vertex sets of K_{\frac{\sqrt{n}}{2}}s are given by...
\(D_3 = \{ \{ v_3, e_4, e_7 \}, i = 1, 2, 3, \ldots, n - 8 \}, \ldots \)
\(D_{n-3} = \{ \{ v_{n-4}, e_{n}, e_{(n-3)} \}, i = 1, 2 \} \) and hence
\[< C_3 > \cong \left(\frac{n^2 - 6n + 8}{4} \right) K_3. \]

These cover all the edges of \(L(P_n) \) and \(\frac{n^2 - 6n + 8}{2} \) edges of \(F \). The remaining \(\frac{n^2 + 4n - 8}{2} \) edges of \(F \) are covered by \(K_2 \)'s.

Therefore, \(BF_2(P_n) = K_n \bigcup K_{\frac{n-2}{2}} \bigcup \left(\frac{n^2 - 6n + 8}{4} \right) K_3 \bigcup \left(\frac{n^2 + 4n - 8}{2} \right) K_2 \) and hence
\[cp(BF_2(P_n)) = 2 + \left(\frac{n^2 - 6n + 8}{4} \right) + \left(\frac{n^2 + 4n - 8}{2} \right) = \frac{3n^2 + 2n}{4}. \]

Therefore, \(cp(BF_2(P_n)) = \begin{cases}
\frac{3n^2 + 2n}{4} & \text{if } n \text{ is odd.} \\
\frac{3n^2 + 2n}{4} & \text{if } n \text{ is even.}
\end{cases} \)

\textbf{Theorem 2.2:}

For any cycle \(C_n \) on \(n \) vertices \((n \geq 6) \), \(cp(BF_2(C_n)) = \begin{cases}
\frac{3n^2 + 6n - 1}{4} & \text{if } n \text{ is odd.} \\
\frac{3n^2 + 4n + 8}{4} & \text{if } n \text{ is even.}
\end{cases} \)

\textbf{Proof:}

Let \(v_i \) \((1 \leq i \leq n) \) be the vertices of \(C_n \). Let \(e_i = (v_i, v_{i+1}), (1 \leq i \leq n - 1) \) and \(e_n = (v_n, v_1) \).

Then \(V(BF_2(C_n)) = V(C_n) \bigcup E(C_n), |V(BF_2(C_n))| = 2n, |E(BF_2(C_n))| = |E(L(C_n))| + n^2 = \frac{3n(n-1)}{2}. \) The clique number of \(BF_2(C_n) \) is \(\frac{n+1}{2}. \)

\(E(BF_2(C_n)) = E(L(C_n)) \bigcup F, \) where \(F = \bigcup_{i=1}^{n-1} \left(\bigcup_{j=1}^{i} \{ v_j, e_i \} \right) \) ; \(|F| = n^2. \)

\textbf{Case 1:} \(n \) is odd

The edge set of \(BF_2(C_n) \) is decomposed into \(K_{\frac{n-1}{2}}, K_3 \) and \(K_2 \)'s.

Vertex sets of \(2 K_{\frac{n-1}{2}} \) are listed as elements of the sets \(A_1 \) and \(A_2 \), where

\(A_1 = \{ e_1, e_{0}, \ldots, e_{n/2} \}, \ A_2 = \{ e_{n/2}, e_{n}, \ldots, e_n \} \), \(< A_1 > \cong < A_2 > \cong K_{\frac{n-1}{2}}. \)
160 Clique Partition Numbers of Boolean Function Graphs $B(K_p, L(G), \text{INC, NINC})$ and $B(K_p, L(G), \text{INC, NINC})$

Vertex sets of K_3’s are given by $A_3 = \bigcup_{i=1}^{n-3} B_i$ where $B_1 = \{\{v_i, e_i, e_{i+3}\}, i = 1, 2, 3, \ldots, n - 3\}$, $B_2 = \{\{v_i, e_i, e_{i+5}\}, i = 1, 2, 3, \ldots, n - 5\}$, $B_3 = \{\{v_i, e_i, e_{i+7}\}, i = 1, 2, 3, \ldots, n - 7\}$, \ldots, $B_{n-3} = \{\{v_i, e_i, e_{i+(n-2)}\}, i = 1, 2\}$ and hence $<A_3> \cong \left(\frac{n^2 - 4n + 3}{4}\right) K_3$.

These cover $\left(\frac{n^2 - 4n + 3}{2}\right)$ edges of $L(C_n)$ and $\left(\frac{n^2 - 4n + 3}{2}\right)$ edges of F. The remaining $\left(\frac{n-3}{2}\right)$ edges of $L(C_n)$ and $\left(\frac{n^2 + 4n - 3}{2}\right)$ edges of F are covered by K_2’s and in total there are $\left(\frac{n^2 + 5n - 6}{2}\right)$ K_2’s.

Therefore, $BF_2(C_n) = 2 \bigcup_{i=1}^{n-1} \left(\frac{n^2 - 4n + 3}{4}\right) K_3 \bigcup \left(\frac{n^2 + 5n - 6}{2}\right) K_2$ and hence $\text{cp}(BF_2(C_n)) = 2 + \left(\frac{n^2 - 4n + 3}{4}\right) + \left(\frac{n^2 + 5n - 6}{2}\right) = \frac{3n^2 + 6n - 1}{4}$.

Case 2: n is even

The edge set of $BF_2(C_n)$ is decomposed into $K_{\frac{n}{2}}$, K_3 and K_2’s. Vertex sets of $2K_{\frac{n}{2}}$ are listed as elements of the sets D_1 and D_2.

$D_1 = \{e_1, e_3, \ldots, e_n\}$; $D_2 = \{e_2, e_4, \ldots, e_n\}$ and $<D_1> \cong <D_2> \cong K_{\frac{n}{2}}$.

Vertex sets of K_3’s are given by $D_3 = \{\{v_i, e_i, e_{2i+2}\}, \text{for each } i, 1 \leq i \leq \frac{n-4}{2}\}$ and $<D_1> \cong \frac{n-4}{2} K_3$.

$D_4 = \bigcup_{i=1}^{\lfloor \frac{n}{2} \rfloor} D_{ij}$, where $D_{ij} = \{\{v_i, e_i, e_{i+3}\}, i = 2, 3, \ldots, n - 3\}$, $D_{2j} = \{\{v_i, e_i, e_{i+5}\}, i = 2, 3, \ldots, n - 5\}$, $D_{3j} = \{\{v_i, e_i, e_{i+7}\}, i = 2, 3, \ldots, n - 7\}$, \ldots, $D_{n-4j} = \{\{v_{n-j}, e_i, e_i+1\}, i = 2, 3\}$ and $<D_4> \cong \left(\frac{n^2 - 6n + 8}{4}\right)$.

These cover all the edges of $L(C_n)$ and $\left(\frac{n^2 - 4n}{2}\right)$ edges of F. The remaining $\left(\frac{n^2 - 4n}{2}\right)$ edges of F are covered by K_2’s.
Therefore, $\text{BF}_2(C_n) = 2K_3 \cup \left(\frac{n^2 - 4n}{2} \right) K_3 \cup \left(\frac{n^2 + 4n}{2} \right) K_3$ and hence

$$\text{cp}(\text{BF}_2(C_n)) = 2 + \left(\frac{n^2 - 4n}{2} \right) + \left(\frac{n^2 + 4n}{2} \right) = \frac{3n^2 + 4n + 8}{4}.$$

Therefore, $\text{cp}(\text{BF}_2(C_n)) = \begin{cases}
3n^2 + 6n - 1 & \text{if } n \text{ is odd.} \\
4 & \text{if } n \text{ is even.}
\end{cases}$

Theorem 2.3:

For the star $K_{1,n}$ on n vertices ($n \geq 3$), $\text{cp}(\text{BF}_2(K_{1,n})) = n(n + 1)$.

Proof:

Let v be the central vertex and $v_1, v_2, v_3, \ldots, v_n$ be the pendant vertices and e_1, e_2, \ldots, e_n be the edges of $K_{1,n}$, where $e_i = (v, v_i), (1 \leq i \leq n)$.

Then $v, v_1, v_2, v_3, \ldots, v_n, e_1, e_2, \ldots, e_n \in V(\text{BF}_2(K_{1,n}))$ and $|V(\text{BF}_2(K_{1,n}))| = 2n + 1$ and $|E(\text{BF}_2(K_{1,n}))| = n(n + 1)$ and the clique number is 2. Since $\text{BF}_2(K_{1,n})$ is C₃ free and edges of $\text{BF}_2(K_{1,n})$ can be decomposed into K_2's only. The edge sets of $n(n + 1)K_2$ are denoted as A_1 and A_2 are given as

$$A_1 = \{(v, e_i): 1 \leq i \leq n\} \text{ and } A_2 = \bigcup_{i=1}^{n} \bigcup_{j=i}^{n} \{(v, e_i)\}, \quad |A_1| = n; |A_2| = n^2; |A_1| + |A_2| = n(n + 1).$$

Therefore $\text{cp}(\text{BF}_2(K_{1,n})) = n(n + 1)$.

Theorem 2.4:

For the wheel W_{n+1} on $(n+1)$ vertices ($n \geq 6$),

$$\text{cp}(\text{BF}_2(W_{n+1})) = \begin{cases}
11n^2 - 2n - 1 & \text{if } n \text{ is odd.} \\
4 & \text{if } n \text{ is even.}
\end{cases}$$

Proof:

Let v be the central vertex of W_{n+1} and $v_1, v_2, v_3, \ldots, v_n$ be the vertices of cycle C_n. Let $e_i = (v, v_i), 1 \leq i \leq n$ and $j \equiv (i + 1)(\text{mod } n)$ and $f_i = (v, v_i), 1 \leq i \leq n$. Then $V(\text{BF}_2(W_{n+1})) = V(W_{n+1}) \cup E(W_{n+1})$.

$|V(\text{BF}_2(W_{n+1}))| = (n + 1) + (2n) = 3n + 1.$
\[|E(\ BF_2(W_{n+1})|) = |E(L(W_{n+1}))| + 2(n+1)\] and the clique number is \(\frac{n+1}{2}\).

Then \(E(\ BF_2(W_{n+1})|) = E(L(W_{n+1})) \cup F \cup H\), where \(F = \bigcup_{i=1}^{n} \left\{ (v_i, e_i), (v_i, f_i) \right\}\) and \(H = \bigcup_{i=1}^{n} \left\{ (v_i, e_i), (v_i, f_i) \right\}\).

Case 1: \(n\) is odd

The edge set of \(BF_2(W_{n+1})\) is decomposed into \(K_{\frac{n}{2}}, K_3\) and \(K_{2}\)'s.

Vertex sets of \(\frac{n}{2}K_{\frac{n}{2}}\) are listed as elements of the sets \(A_1\) and \(A_2\), where

\[A_1 = \{ e_1, e_3, \ldots, e_{n-2} \};\ A_2 = \{ e_2, e_4, \ldots, e_{n-1} \};\ < A_1 > \cong < A_2 > \cong K_{\frac{n}{2}}.\]

Vertex sets of \(K_3\)'s are given by

\[A_3 = \bigcup_{i=1}^{n} B_i\]

where

\[B_1 = \{ (v_1, e_i, e_{i+3}) \}; i = 1, 2, 3, \ldots, n - 3\].
\[B_2 = \{ (v_2, e_i, e_{i+5}) \}; i = 1, 2, 3, \ldots, n - 5\].
\[B_3 = \{ (v_3, e_i, e_{i+7}) \}; i = 1, 2, 3, \ldots, n - 7\].
\[\ldots\]
\[B_{\frac{n}{2}} = \{ (v_{n-1}, e_i, e_{i+2}) \}; i = 1, 2\] and \(< A_3 > \cong \left(\frac{n^2 - 4n + 3}{4} \right) K_3\).

\[A_4 = \{ (v, f_i, e_{i+1}) \}; 1 \leq i \leq n, e_{n+1} = e_1\] and \(< A_4 > \cong nK_3\).

These cover all the edges of \(H\), \(\frac{n^2 - 2n + 3}{2}\) edges of \(L(W_{n+1})\) and \(\frac{n^2 - 4n + 3}{2}\) edges of \(F\). The remaining \(\frac{5n^2 - n - 6}{2}\) edges are covered by \(K_2\)'s.

Therefore, \(BF_2(W_{n+1}) = 2K_{\frac{n}{2}} \cup \left(\frac{n^2 + 3}{4} \right) K_3 \cup \left(\frac{5n^2 - n - 6}{2} \right) K_2\) and hence

\[cp(BF_2(W_{n+1})) = 2 + \left(\frac{n^2 + 3}{4} \right) + \left(\frac{5n^2 - n - 6}{2} \right) = \frac{11n^2 - 2n - 1}{4}.

Case 2: \(n\) is even

The edge set of \(BF_2(W_{n+1})\) is decomposed into \(K_{\frac{n}{2}}, K_3\) and \(K_2\)'s.
Vertex sets of $2K_n$ are listed as elements of the sets C_1 and C_2.

$C_1 = \{e_1, e_3, \ldots, e_{n-1}\}$; $C_2 = \{e_2, e_4, \ldots, e_n\}$ and $< C_1 > \cong < C_2 > \cong K_{n/2}$.

Vertex sets of K_n’s are given by

$C_3 = \{\{v_i, e_1, e_{2i+2}\}, \text{for each } i, 1 \leq i \leq \frac{n-4}{2}\}$ and $< C_3 > \cong \frac{n-4}{2} K_3$.

$C_4 = \bigcup_{i=1}^{\left\lfloor \frac{n}{4} \right\rfloor} D_i$, where $D_1 = \{\{v, e_1, e_{i+2}\}, i = 2, 3, \ldots, n - 3\}$, $D_2 = \{\{v, e_1, e_{i+4}\}, i = 2, 3, \ldots, n - 5\}$, $D_3 = \{\{v, e_1, e_{i+6}\}, i = 2, 3, \ldots, n - 7\}$, \ldots, $D_{\left\lfloor \frac{n}{4} \right\rfloor} = \{\{v, e_1, e_{i+(n-3)}\}, i = 2, 3\}$ and $< C_4 > \cong \left(\frac{n^2 - 6n + 8}{4}\right) K_3$.

$c_5 = \{\{v, f_i, e_{i+1}\}; 1 \leq i \leq n, e_{n+1} = e_1\}$ and $< C_5 > \cong nK_3$.

These cover all the edges of H, $\left(\frac{n^2 - n}{2}\right)$ edges of $L(C_n)$ and edges $\left(\frac{n^2 - 4n}{2}\right)$ of F.

The remaining $\left(\frac{5n^2 - 2n}{2}\right)$ edges of F are covered by K_2’s.

Therefore, $BF_c(W_{e+1}) = 2K_{n/2} \bigcup \left(\frac{n^2}{4}\right) K_3 \bigcup \left(\frac{5n^2 - 2n}{2}\right) K_2$ and hence

$cp(BF_c(W_{e+1})) = 2 + \left(\frac{n^2}{4}\right) + \left(\frac{5n^2 - 2n}{2}\right) = \frac{11n^2 - 4n + 8}{4}$.

Therefore, $cp(BF_c(W_{e+1})) = \begin{cases}
11n^2 - 2n - 1
& \text{if } n \text{ is odd.} \\
4
& \text{if } n \text{ is even.} \\
\end{cases}$

In the following clique partition number of $P_n \circ K_i$ and $C_n \circ K_i$ are found.

Theorem 2.5:

For the graph $P_n \circ K_i$ ($n \geq 6$), $cp(BF_c(P_n \circ K_i)) = \begin{cases}
\frac{9n^2 - 6n + 3}{2}
& \text{if } n \text{ is odd.} \\
\frac{9n^2 - 7n + 8}{2}
& \text{if } n \text{ is even.} \\
\end{cases}$
Proof:
Let \(v_i \) (\(1 \leq i \leq n \)) be the vertices of \(P_n \) with \(v_1 \) and \(v_n \) as pendant vertices and let \(e_i = (v_i, v_{i+1}), \) (\(1 \leq i \leq n-1 \)) be the edges of \(P_n \). Let \(u_i \) be the pendant vertex adjacent to \(v_i \) (\(1 \leq i \leq n \)) and let \(f_i = (v_i, u_i), \) (\(1 \leq i \leq n \)).

\[
V(BF(P_n \circ K_2)) = V(P_n \circ K_2) \cup E(P_n \circ K_2).
\]

Therefore \(|V(BF(P_n \circ K_2))| = 2n + 2n - 1 = 4n - 1. \)

Let \(F = \bigcup_{i=1}^{n-1} \bigcup_{j=1}^{n} \{(v_i, e_i), (u_i, e_i)\} \)

and \(H = \bigcup_{i=1}^{n-1} \bigcup_{j=1}^{n} \{(v_i, f_i), (u_i, f_i)\} \)

\[
|F| = 2n(n - 1); \ |H| = 2n^2. \text{ Then } E(BF(P_n \circ K_2)) = E(L(P_n \circ K_2)) \cup F \cup H.
\]

\[
|E(BF(P_n \circ K_2))| = 6n^2 - 8n + 5. \text{ The clique number of } BF(P_n \circ K_2) \text{ is } \frac{n-1}{2}.
\]

Case 1: \(n \) is odd

Vertex sets of \(K_{\frac{n-1}{2}} \) are listed as elements of the sets \(A_1, A_2, A_3, \) and \(A_4. \)

\(A_1 = \{v_1, e_1, \ldots, e_{\frac{n}{2}}\}; \ A_2 = \{v_2, e_2, \ldots, e_{\frac{n}{2}}\}. \)

\(A_3 = \{f_1, f_3, \ldots, f_{\frac{n}{2}}\}; \ A_4 = \{f_2, f_4, \ldots, f_{\frac{n}{2}}\}. \)

Vertex sets of \(K_3 \)'s are given by

\[
B_i = \bigcup_{j=1}^{\frac{n}{2}} \{v_{\frac{n-1}{2}}, e_{\frac{n}{2}+i}, e_{\frac{n}{2}+i+1}\}, \quad i = 2, 3, \ldots, n-4.
\]

\[
C_i = \bigcup_{j=1}^{\frac{n}{2}} \{u_{\frac{n}{2}+i}, f_{\frac{n}{2}+i}, f_{\frac{n}{2}+i+1}\}, \quad i = 1, 2, 3, \ldots, n-3.
\]

\[
A_6 = \bigcup_{i=1}^{\frac{n}{2}} \{v_{\frac{n}{2}+i}, f_{\frac{n}{2}+i}, f_{\frac{n}{2}+i+1}\}, \quad i = 1, 2, 3, \ldots, n-2.
\]

\[
A_7 = \{v_n, f_{\frac{n}{2}}, f_{\frac{n}{2}+1}\}; \ \text{ and } <A_7> \cong nK_3.
\]
\[A_8 = \{\{v_i, e_i, e_{n+1}\}, \text{for each } i, 1 \leq i \leq \frac{n-3}{2}\} \text{ and } < A_8 > \cong \frac{n-3}{2} K_3. \]

These cover \(\left(\frac{2n^2 - 7n + 9}{2} \right) \) edges of \(L(P_n \circ K_2) \) and \(\left(\frac{n^2 - 6n + 9}{2} \right) \) edges of \(F \) and

\(\left(\frac{n^2 + 3}{2} \right) \) edges of \(H \). The remaining \(\left(\frac{8n^2 - 3n - 11}{2} \right) \) edges are covered by \(K_2 \)'s.

Therefore, \(BF_2(P \circ K_2) = 4 K_{\frac{n}{2}} \cup \left(\frac{n^2 - 3n + 6}{2} \right) K_3 \cup \left(\frac{8n^2 - 3n - 11}{2} \right) K_2 \) and hence

\[cp(BF_2(P \circ K_2)) = 4 + \left(\frac{n^2 - 3n + 6}{2} \right) + \left(\frac{8n^2 - 3n - 11}{2} \right) = \frac{9n^2 - 6n + 3}{2}. \]

Case 2: \(n \) is even

Vertex sets of \(K_{\frac{n}{2}}, K_{\frac{n-2}{2}} \) are listed as elements of the sets \(D_1, D_2, D_3 \) and \(D_4 \), where

\[D_1 = \{e_1, e_0, e_{n-1}\}. \]

\[D_2 = \{e_2, e_0, e_{n-2}\}. \]

\[D_3 = \{f_1, f_0, f_{n-1}\}. \]

\[D_4 = \{e_0, e_{n}, e_{n+1}\} \text{ and } < D_1 > \cong < D_3 > \cong < D_4 > \cong K_{\frac{n}{2}} ; < D_2 > \cong K_{\frac{n-2}{2}}. \]

Vertex sets of \(K_3 \)'s are given by

\[\left\{ \bigcup_{i=1}^{n-4} E_i \right\}, \text{ where} \]

\[E_1 = \{\{v_1, e_i, e_{i+3}\}, i = 1, 2, 3, \ldots, n-4\}. \]

\[E_2 = \{\{v_2, e_i, e_{i+5}\}, i = 1, 2, 3, \ldots, n-6\}. \]

\[E_3 = \{\{v_3, e_i, e_{i+7}\}, i = 1, 2, 3, \ldots, n-8\}. \]

\[E_{n-4} = \{\{v_{n-4}, e_0, e_{i+(n-3)}\}, i = 1, 2\} \text{ and } < D_5 > \cong \left(\frac{n^2 - 6n + 8}{4} \right) K_3. \]

\[\left\{ \bigcup_{i=1}^{n-3} J_i \right\}, \text{ where} \]

\[J_1 = \{\{u_1, f_i, f_{i+3}\}, i = 2, 3, \ldots, n-3\}. \]

\[J_2 = \{\{u_2, f_i, f_{i+5}\}, i = 2, 3, \ldots, n-5\}. \]

\[J_3 = \{\{u_3, f_i, f_{i+7}\}, i = 2, 3, \ldots, n-7\}. \]
Clique Partition Numbers of Boolean Function Graphs $\overline{B(K_p,L(G),\text{INC},\text{NINC})}$ and $\overline{B(K_p,L(G),\text{INC},\text{NINC})}$

\[J_{n-1}^{1} = \{(u_{i-1,n-i}, f_{i}, f_{i+1}) : i = 2, 3\} \text{ and } < D_{n} > \cong \left(\frac{n^2 - 6n + 8}{4}\right) K_3. \]

\[D_7 = \{(u_i, f_i, f_{i+1}) : 1 \leq i \leq \frac{n-4}{2}\} \text{ and } < D_{7} > \cong \left(\frac{n-4}{2}\right) K_3. \]

\[D_8 = \{(v_i, f_i, f_{i+1}) : 1 \leq i \leq n, f_{n+1} = f_1\} \text{ and } < D_{8} > \cong nK_3. \]

These cover $n^2 - 3n + 3$ edges of $L(P_n \circ K_1)$ and $\frac{n}{2}$ edges of F and $\left(\frac{n^2 - 2n + 8}{2}\right)$ edges of H. The remaining $\left(\frac{8n^2 - 4n - 4}{2}\right)$ edges are covered by K_3's.

Therefore, $BF_2(P_n \circ K_1) = 3K_n \cup \frac{K_{n-2}}{2} \bigcup \left(\frac{n^2 - 3n + 4}{2}\right) K_3 \bigcup \left(\frac{8n^2 - 4n - 4}{2}\right) K_2$

and hence $cp(BF_2(P_n \circ K_1)) = 4 + \left(\frac{n^2 - 3n + 4}{2}\right) + \left(\frac{8n^2 - 4n - 4}{2}\right) = \frac{9n^2 - 7n + 8}{2}.$

Therefore, $cp(BF_2(P_n \circ K_1)) = \begin{cases}
\frac{9n^2 - 6n + 3}{2} & \text{if } n \text{ is odd,} \\
\frac{9n^2 - 7n + 8}{2} & \text{if } n \text{ is even.}
\end{cases}$

Theorem 2.6:

For the graph $C_n \circ K_1 (n \geq 6)$, $cp(BF_2(C_n \circ K_1)) = \begin{cases}
\frac{9n^2 - 6n + 3}{2} & \text{if } n \text{ is odd,} \\
\frac{9n^2 - 7n + 8}{2} & \text{if } n \text{ is even.}
\end{cases}$

Proof:

Let $v_i (1 \leq i \leq n)$ be the vertices of C_n and let $u_i (1 \leq i \leq n)$ be the pendant vertex adjacent to v_i. Let $e_i = (v_i, v_{i+1})$, $(1 \leq i \leq n - 1)$, $e_n = (v_n, v_1)$ and $f_i = (v_i, u_i) ; (1 \leq i \leq n)$.

$V(BF_2(C_n \circ K_1)) = V(C_n \circ K_1) \cup E(C_n \circ K_1)$. Therefore $|V(BF_2(C_n \circ K_1))| = 4n.$

Then $E(BF_2(C_n \circ K_1)) = L((C_n \circ K_1)) \cup F,$

where $F = \bigcup_{j=1}^{n} \left\{(v_j, e_j), (v_j, f_j), (u_j, e_j), (u_j, f_j)\right\}; |F| = 4n^3.$

$|E(BF_2(C_n \circ K_1))| = 6n^2 - 4n.$

Case1: n is odd
The edge set of $BF_2(C_n \circ K_2)$ is decomposed into K_{n-1}, K_3 and K_2's.

Vertex set of K_{n-1} are listed as elements of the sets A_1, A_2, A_3 and A_4, where

$A_1 = \{e_1, e_3, \ldots, e_{n-2}\}; \quad A_2 = \{e_2, e_4, \ldots, e_{n-1}\}.
A_3 = \{f_1, f_3, \ldots, f_{n-2}\}; \quad A_4 = \{f_2, f_4, \ldots, f_{n-1}\}.

Vertex sets of K_3's are given by

$A_5 = \bigsqcup_{i=1}^{n-3} B_i$, where

$B_1 = \{\{v_i, e_i, e_{i+3}\}, i = 1, 2, 3, \ldots, n-3\}.$
$B_2 = \{\{v_2, e_i, e_{i+5}\}, i = 1, 2, 3, \ldots, n-5\}.$
$B_3 = \{\{v_3, e_i, e_{i+7}\}, i = 2, 3, \ldots, n-7\}.$

$A_6 = \bigsqcup_{i=1}^{n-3} C_i$, where

$C_1 = \{\{u_1, f_i, f_{i+3}\}, i = 1, 2, 3, \ldots, n-3\}.$
$C_2 = \{\{u_2, f_i, f_{i+5}\}, i = 1, 2, 3, \ldots, n-5\}.$
$C_3 = \{\{u_3, f_i, f_{i+7}\}, i = 1, 2, 3, \ldots, n-7\}.$

$A_7 = \{\{v_i, f_i, f_{i+1}\}; 1 \leq i \leq n, f_{n+1} = f_1\}$ and $\langle A_7 \rangle \cong 2K_3.$

These cover $n^2 - 3n + 3$ edges of $L(C_n \circ K_2)$ and $n^2 - 2n + 3$ edges of F. The remaining $4n^2 + n - 6$ edges are covered by K_2's.

Therefore, $BF_2(C_n \circ K_2) = 4K_{n-1} \cup \left(\frac{n^2 - 2n + 3}{2}\right)K_3 \cup (4n^2 + n - 6)K_2$ and hence

$cp(BF_2(C_n \circ K_2)) = 4 + \left(\frac{n^2 - 2n + 3}{2}\right) + (4n^2 + n - 6) = \frac{9n^2 - 1}{2}.$

Case 2: n is even

The edge set of $BF_2(C_n \circ K_2)$ is decomposed into edges of K_{n-1}, K_3, K_2's.
Vertex sets of 4 K_n are listed as elements of the sets D_1, D_2, D_3 and D_4, where

$D_1 = \{e_1, e_3, \ldots, e_{n-1}\}$; \quad $D_2 = \{e_2, e_4, \ldots, e_n\}$.

$D_3 = \{f_1, f_3, \ldots, f_{n-1}\}$; \quad $D_4 = \{f_2, f_4, \ldots, f_n\}$.

Vertex sets of $K_{3, s}'$s are given by

$D_5 = \{\{v_i, e_1, e_{2i+2}\}; 1 \leq i \leq \frac{n-4}{2}\}$ and $< D_5 > \cong \left(\frac{n-4}{2}\right) K_3$.

$D_6 = \left(\frac{n-4}{2}\right) E_i$ where

$E_i = \{\{v_i, e_0, e_{i+3}\}; i = 2, 3, \ldots, n-3\}$.

$E_2 = \{\{v_2, e_0, e_{i+5}\}; i = 2, 3, \ldots, n-5\}$.

$E_3 = \{\{v_3, e_0, e_{i+7}\}; i = 2, 3, \ldots, n-7\}$.

$E_{n-4} = \left(\frac{n-4}{2}\right) J_i$ and $< D_6 > \cong \left(\frac{n^2 - 6n + 8}{4}\right) K_3$.

$D_7 = \left(\frac{n-4}{2}\right) J_i$ where

$J_i = \{\{u_i, f_0, f_{i+3}\}; i = 2, 3, \ldots, n-3\}$.

$J_2 = \{\{u_2, f_0, f_{i+5}\}; i = 2, 3, \ldots, n-5\}$.

$J_3 = \{\{u_3, f_0, f_{i+7}\}; i = 2, 3, \ldots, n-7\}$.

$J_{n-4} = \left(\frac{n-4}{2}\right) J_i$ and $< D_7 > \cong \left(\frac{n^2 - 6n + 8}{4}\right) K_3$.

$D_8 = \{\{u_i, f_0, f_{2i+2}\}; 1 \leq i \leq \frac{n-4}{2}\}$ and $< D_8 > \cong \frac{n-4}{2} K_3$.

$D_9 = \{\{v_i, f_0, f_{i+1}\}; 1 \leq i \leq n, f_{n+1} = f_1\}$ and $< D_9 > \cong nK_3$.

These cover $n^2 - 2n$ edges of $L(C_n \circ K_2)$ and $n^2 - 2n$ edges of F.

The remaining $4n^2$ edges are covered by $K_{3, s}'$s.

Therefore, $BF_2(C_n \circ K_2) = 4 K_3 \bigcup \left(\frac{n^2 - 2n}{2}\right) K_3 \bigcup (4n^2) K_2$ and hence
\[\text{cp}(B_{j}^{*}(C_{n} \circ K_{j})) = 4 + \left(\frac{n^2 - 2n}{2} \right) + 4n^2 = \frac{9n^2 - 2n + 4}{2}. \]

Therefore, \[\text{cp}(B_{j}^{*}(C_{n} \circ K_{j})) = \begin{cases}
\frac{9n^2 - 1}{2} & \text{if } n \text{ is odd,} \\
\frac{9n^2 - 2n + 4}{2} & \text{if } n \text{ is even.}
\end{cases} \]

3. **Clique partition of BF_{3}(G)**

In the following, clique partition number of path, cycle, star and wheel graphs are found.

Theorem 3.1:
For the path \(P_{n} \) on \(n \) vertices \((n \geq 5) \), \(\text{cp}(B_{j}^{*}(P_{n})) = n^2 - 2n + 2. \)

Proof:
Let \(v_{1}, v_{2}, v_{3}, \ldots, v_{n} \) be the vertices and \(e_{1}, e_{2}, \ldots, e_{n-1} \) be the edges of \(P_{n} \), where \(e_{i} = (v_{i}, v_{i+1}), (1 \leq i \leq n - 1) \). Then \(v_{1}, v_{2}, v_{3}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n-1} \in V(B_{j}^{*}(P_{n})) \) and \(|V(B_{j}^{*}(P_{n}))| = 2n - 1, |E(B_{j}^{*}(P_{n}))| = |E(L(P_{n}))| + n(n - 2) = n^2 - 2n + 2. \)

The clique number of \(B_{j}^{*}(P_{n}) \) is 3.

\[E(B_{j}^{*}(P_{n})) = E(L(P_{n})) \bigcup F, \text{ where } F = \bigcup_{j=1}^{n-1} \left(\bigcup_{i=1}^{j} e_{i} \right); |F| = n(n - 1). \]

The edge set of \(B_{j}^{*}(P_{n}) \) is decomposed into \(K_{3} \) and \(K_{2}'s. \)

Vertex sets of \(K_{2}'s \) is given by \(B = \{e_{j}, e_{j+1}, e_{j+2}\}, \) for each \(i, 1 \leq i \leq n - 2\).

These cover all the edges of \(L(P_{n}) \) and \(2(n - 2) \) edges of \(F. \) The remaining \((n^2 - 3n + 4) \) edges in \(F \) are covered by \(K_{2}'s. \)

Therefore, \(B_{j}^{*}(P_{n}) = (n - 2)K_{3} \bigcup (n^2 - 3n + 4)K_{2} \) and hence \(\text{cp}(B_{j}^{*}(P_{n})) = n^2 - 2n + 2. \)

Theorem 3.2:
For the cycle \(C_{n} \) on \(n \) vertices \((n \geq 5) \), \(\text{cp}(B_{j}^{*}(C_{n})) = n^2 - n. \)

Proof:
Let \(v_{1}, v_{2}, v_{3}, \ldots, v_{n} \) be the vertices and \(e_{1}, e_{2}, \ldots, e_{n} \) be the edges of \(C_{n} \), where \(e_{i} = (v_{i}, v_{i+1}), (1 \leq i \leq n - 1) \) and \(e_{n} = (v_{n}, v_{1}). \)

\[V(B_{j}^{*}(C_{n})) = V(C_{n}) \bigcup E(C_{n}). \text{ Then } |V(B_{j}^{*}(C_{n}))| = 2n \text{ and } |E(B_{j}^{*}(C_{n}))| = |E(L(C_{n}))| + n = n^2 + n. \text{ The clique number of } B_{j}^{*}(C_{n}) \text{ is 3.} \]

\[E(B_{j}^{*}(C_{n})) = E(L(C_{n})) \bigcup F, \text{ where } F = \bigcup_{j=1}^{n} \left(\bigcup_{i=1}^{j} e_{i} \right); |F| = n^2. \]
The edge set of $BF_3(C_n)$ is decomposed into K_3 and K_2's.

Vertex sets of K_3's is given by

$$C = \{ (e_i, e_{i+1}, v_{i+1}), \text{ for each } i, 1 \leq i \leq n \}, \quad v_{n+1} = v_1, \quad e_0 = e_1.$$

These sets cover all the edges of $L(C_n)$ and $2n$ edges of F. The remaining $n(n - 2)$ edges are covered by K_2's. Therefore $BF_3(C_n) = nK_3 \cup (n(n - 2))K_2$ and hence $cp(BF_3(C_n)) = n + n(n - 2) = n^2 - n$.

Theorem 3.3:

For the star $K_{1,n}$ on n vertices ($n \geq 6$), $cp(BF_3(K_{1,n})) = \begin{cases} \frac{3n^2 + 14n - 1}{4} & \text{if } n \text{ is odd.} \\ \frac{3n^2 + 12n + 8}{4} & \text{if } n \text{ is even.} \end{cases}$

Proof:

Let v be the central vertex and $v_1, v_2, v_3, \ldots, v_n$ be the pendant vertices and e_1, e_2, \ldots, e_n be the edges of $K_{1,n}$, where $e_i = (v, v_i)$, $(1 \leq i \leq n)$.

Then $v, v_1, v_2, v_3, \ldots, v_n, e_1, e_2, \ldots, e_n = V(BF_3(K_{1,n}))$ and $|V(BF_3(K_{1,n}))| = 2n + 1$ and

$$|E(BF_3(K_{1,n}))| = E(L(K_{1,n})) + n(n + 1) = \frac{n(3n + 1)}{2}$$

and the clique number is $\frac{n}{2}$.

$$E(BF_3(K_{1,n})) = E(L(BF_3(K_{1,n}))) \cup F \cup H,$$

where

$$F = \{(v, e_i): 1 \leq i \leq n\}; \quad H = \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} (v_j, e_i).$$

$|F| = n$ and $|H| = n^2$.

Case 1: n is odd.

The edge set of $BF_3(K_{1,n})$ is decomposed into K_n, K_3, and K_2's.

Vertex sets of $2K_{n-1}$ are listed as elements of the sets A_1 and A_2, where

$$A_1 = \{ e_1, e_2, \ldots, e_n \} \quad A_2 = \{ e_2, e_3, \ldots, e_{n-1} \}.$$

Vertex sets of K_2's are given by

$$A_3 = \bigcup_{i=1}^{n-1} B_i, \text{ where }$$

$$B_1 = \{ (v_1, e_0, e_{i+3}), i = 1, 2, 3, \ldots, n - 3 \}. \quad B_2 = \{ (v_2, e_0, e_{i+5}), i = 1, 2, 3, \ldots, n - 5 \}. \quad B_3 = \{ (v_3, e_0, e_{i+7}), i = 1, 2, 3, \ldots, n - 7 \}. $$

...
\[B_{n-4} = \{ \{ v_{n-4}, e_0, e_{i_1(n-2)} \}, i = 1, 2 \} \text{ and } < A_3 > \cong \frac{n^2 - 4n + 3}{4} K_3. \]

These cover \(\left(\frac{n^2 - 4n + 3}{2} \right) \) edges of \(L(K_{1,n}) \) and \(H \). The remaining \(\left(\frac{n^2 + 9n - 6}{2} \right) \) edges are covered by \(K_2 \)'s.

Therefore, \(BF_3(K_{1,n}) = 2 K_{n-1} \bigcup \left(\frac{n^2 - 4n + 3}{4} \right) K_3 \bigcup \left(\frac{n^2 + 9n - 6}{2} \right) K_3 \) and hence

\[cp(BF_3(K_{1,n})) = 2 + \left(\frac{n^2 - 4n + 3}{4} \right) + \left(\frac{n^2 + 9n - 6}{2} \right) = \frac{3n^2 + 14n - 1}{4}. \]

Case 2: \(n \) is even

The edge set of \(BF_3(K_{1,n}) \) is decomposed into \(K_n, K_3 \) and \(K_2 \)'s.

Vertex sets of \(2 K_n \) are listed as elements of the sets \(C_1 \) and \(C_2 \).

\[C_1 = \{ e_1, e_2, \ldots, e_n \}; \quad C_2 = \{ e_2, e_4, \ldots, e_n \}. \]

Vertex sets of \(K_3 \)'s are given by

\[C_3 = \{(v_i, e_0, e_{i+3}) \text{ for each } i, 1 \leq i \leq \frac{n-4}{2} \} \text{ and } < C_3 > \cong \frac{n-4}{2} K_3 \]

\[C_4 = \bigcup_{i=1}^{\frac{n-4}{2}} D_i \text{ where } \]

\[D_1 = \{ \{ v_i, e_0, e_{i+3} \}, i = 2, 3, \ldots, n - 3 \}. \]

\[D_2 = \{ \{ v_0, e_0, e_{i+3} \}, i = 2, 3, \ldots, n - 5 \}. \]

\[D_3 = \{ \{ v_3, e_0, e_{i+7} \}, i = 2, 3, \ldots, n - 7 \}. \]

\[\ldots \]

\[D_{n-4} = \{ \{ v_{n-4}, e_0, e_{i_1(n-3)} \}, i = 2, 3 \} \text{ and } < C_4 > \cong \left(\frac{n^2 - 6n + 8}{4} \right) K_3. \]

These cover \(\left(\frac{n^2 - 3n}{2} \right) \) edges of \(L(K_{1,n}) \) and edges \(\left(\frac{n^2 - 4n}{2} \right) \) of \(H \). The remaining \(\left(\frac{n^2 + 8n}{2} \right) \) edges are covered by \(K_2 \)'s.
Therefore, $BF_3(K_{1, n}) = 2K_n \cup \left(\frac{n^2 - 4n}{4} \right) K_4 \cup \left(\frac{n^2 + 8n}{2} \right) K_3$ and hence

$$cp(BF_3(K_{1, n})) = 2 + \left(\frac{n^2 - 4n}{4} \right) + \left(\frac{n^2 + 8n}{2} \right) = \frac{3n^2 + 12n + 8}{4}.$$

Therefore, $cp(BF_3(K_{1, n})) = \begin{cases}
3n^2 + 14n - 1 & \text{if } n \text{ is odd}; \\
4 & \text{if } n \text{ is even.}
\end{cases}$

Theorem 3.4:

For the wheel W_{n+1} on $(n+1)$ vertices $(n \geq 6)$, $cp(3n + 1BF(W_{n+1})) = 2n^2 - n + 1$.

Proof:

Let v be the central vertex of W_{n+1} and $v_1, v_2, v_3, \ldots, v_n$ be the vertices of cycle C_n. Let $e_i = (v_i, v_j), 1 \leq i \leq n$ and $j \equiv (i + 1) \text{ (mod n)}$ and $f_i = (v_i, v_j), 1 \leq i \leq n$.

Then $V(BF_3(W_{n+1})) = V(W_{n+1}) \cup E(W_{n+1}), |V(BF_3(W_{n+1}))| = (n + 1) + (2n) = 3n + 1$.

$|E(BF_3(W_{n+1}))| = |E(L(W_{n+1}))| + 2n (n + 1) = 3n + \frac{n(n - 1)}{2} + 2n(n + 1) = \frac{n(5n + 9)}{2}$ and the clique number of W_{n+1} is n.

Then $|E(BF_3(W_{n+1}))| = |E(L(W_{n+1}))| \cup |E(K_n)| \cup F \cup H$, where

$F = \bigcup_{i=1}^{n} \{(v_i, e_i), (v_i, f_i)\}; |F| = 2n$ and $H = \bigcup_{i=1}^{n} \{(v_i, e_i), (v_i, f_i)\}; |H| = 2n^2$.

The edge set of $BF_3(W_{n+1})$ is decomposed into K_n, K_3 and K_2's.

$V(K_n) = \{f_1, f_2, \ldots, f_n\}$;

Vertex sets of K_3's are given by

$B_1 = \{(e_i, e_{i+1}, v_i), 1 \leq i \leq n\}$ and

$B_2 = \{(e_i, f_{i+1}, v_{i+1}), 1 \leq i \leq n, v_{n+1} = v_1, f_{n+1} = f_1\}$ and

$B_3 = \{(e_i, f_{i+1}, v_{i+3}), 1 \leq i \leq n, e_{n+1} = e_1, v_{n+1} = v_3, f_{n+1} = f_1\}$ and

$< B_1 > \cong < B_2 > \cong < B_3 > \cong nK_3$.

The sets $V(K_n), B_1, B_2$ and B_3 cover all the edges of $K_n, L(W_{n+1})$ and $6n$ edges of F. The remaining $2n^2 - 4n$ edges are covered by K_2's. Therefore $BF_3(W_{n+1}) = K_n \cup (3n)K_3 \cup (2n^2 - 4n)K_2$ and hence $cp(BF_3(W_{n+1})) = 1 + 3n + 2n^2 - 4n = 2n^2 - n + 1$.

In the following, clique partition number of $p \circ K_1$ and $C_n \circ K_1$ are found.
Theorem 3.5:
For the graph \(P_n \circ K_1 \) (\(n \geq 6 \)), \(cp(BF_j(P_n \circ K_1)) = 4n^2 - 5n + 4 \).

Proof:
Let \(v_i \) (\(1 \leq i \leq n \)) be the vertices of \(P_n \) with \(v_1 \) and \(v_n \) as pendant vertices and let \(e_i = (v_i, v_{i+1}), (1 \leq i \leq n-1) \) be the edges of \(P_n \). Let \(u_i \) be the pendant vertex adjacent to \(v_i \) (\(1 \leq i \leq n \)) and let \(f_i = (v_i, u_i), (1 \leq i \leq n) \).

\[V(BF_j(P_n \circ K_1)) = V(P_n \circ K_1) \cup E(P_n \circ K_1). \]

Therefore \(|V(BF_j(P_n \circ K_1))| = 2n + 2n - 1 = 4n - 1 \).

Let \(F = \bigcup_{j=1}^{n} \left(\bigcup_{i=1}^{n} (v_i, f_i), (u_i, f_i) \right) \) and \(H = \bigcup_{j=1}^{n} \left(\bigcup_{i=1}^{n} (v_i, e_i), (u_i, e_i) \right) \). Then \(|F| = 2n^2 \) and \(|H| = 2n(n-1) \).

\[|E(BF_j(P_n \circ K_1))| = |E(L(P_n \circ K_1))| + 2n(2n - 1) = (2n - 1)(2n - 1) + \frac{(9n - 10)}{2} = 4n^2 + n - 4. \]

The clique number of \(BF_j(P_n \circ K_1) \) is 3.

The edge set of \(BF_j(P_n \circ K_1) \) is decomposed into \(K_3 \) and \(K_2 \)'s.

Vertex sets of \(K_2 \)'s are given by
\[C_1 = \{(e_i, e_{i+1}, v_i), 1 \leq i \leq n - 2 \}, \]
\[C_2 = \{(e_i, f_{i+1}, v_i), 1 \leq i \leq n - 1 \} \] and
\[C_3 = \{(e_i, u_i, f_{i+1}), \text{ for each } i, 1 \leq i \leq n - 1\} \text{ and } < C_1 > \cong (n - 2)K_3, \]
\[< C_2 > \cong (n - 1)K_3. \]

The sets \(C_1 \), \(C_2 \) and \(C_3 \) cover all the edges of \(L(P_n \circ K_1) \). \(2(n - 2) \) edges of \(H \). \((n - 1) \) edges of \(F \) are covered by \(C_1 \) and \(C_2 \) respectively. \(2(n - 1) \) edges of \(H \) and \((n - 1) \) edges of \(F \) are covered both by \(C_2 \) and \(C_3 \). The remaining \((4n^2 - 8n + 8) \) edges are covered by \(K_2 \)'s.

Therefore \(BF_j(P_n \circ K_1) = (3n - 4)K_3 \bigcup (4n^2 - 8n + 8)K_2 \) and hence
\[cp(BF_j(P_n \circ K_1)) = 3n - 4 + 4n^2 - 8n + 8 = 4n^2 - 5n + 4. \]

Theorem 3.6:
For the graph \(C_n \circ K_1 \) (\(n \geq 6 \)), \(cp(BF_j(C_n \circ K_1)) = 4n^2 - 3n \).

Proof:
Let \(v_i \) (\(1 \leq i \leq n \)) be the vertices of \(C_n \) and let \(u_i \) (\(1 \leq i \leq n \)) be the pendant vertex adjacent to \(v_i \). Let \(e_i = (v_i, v_{i+1}), (1 \leq i \leq n - 1), e_n = (v_n, v_1) \) and \(f_i = (v_i, u_i), (1 \leq i \leq n) \).

\[V(BF_j(C_n \circ K_1)) = V(C_n \circ K_1) \cup E(C_n \circ K_1). \]

Therefore \(|V(BF_j(C_n \circ K_1))| = 2n + 2n = 4n. \)

Let \(F = \bigcup_{j=1}^{n} \left(\bigcup_{i=1}^{n} (v_i, e_i), (v_i, f_i), (u_i, e_i), (u_i, f_i) \right) \). Then \(E(BF_j(C_n \circ K_1)) = E(L(C_n \circ K_1)) \bigcup F. \)

\[|E(BF_j(C_n \circ K_1))| = \frac{8n^2 + 6n}{2} = n(4n + 3). \]
The clique number of $B(F_1(C_n \circ K))$ is 3.

Edge set of $B(F_1(C_n \circ K))$ is decomposed into K_3 and K_2 s.

Vertex sets of K_3 s are given by

$B_1 = \{\{e_i, e_{i+1}, v_i\}, \text{ for each } i, 1 \leq i \leq n, e_{n+1} = e_1\}$ and

$B_2 = \{\{e_i, v_{i+1}, f_{i+1}\}, \text{ for each } i, 1 \leq i \leq n, f_{n+1} = f_1\}$.

$B_3 = \{\{e_{i+1}, u_i, f_{i+1}\}, \text{ for each } i, 1 \leq i \leq n, e_{n+1} = e_1, f_{n+1} = f_1\}$ and

$\langle B_1 \rangle \cong \langle B_2 \rangle \cong \langle B_3 \rangle \cong nK_3$.

The sets B_1, B_2 and B_3 cover all the edges of $L(C_n \circ K)$ and 6n edges of F. The remaining

$n(4n – 6)$ edges of F are covered by K_2 s.

Therefore, $B(F_1(C_n \circ K)) = (3n)K_3 \bigcup (4n^2 – 6n) K_2$ and hence

$cp(B(F_1(C_n \circ K))) = 3n + 4n^2 – 6n = 4n^2 – 3n$.

References:

[14] S.Muthammai, R.Mahalakshmi, Boolean Function Graph $B(G, \overline{K}_q, \text{INC})$ of a graph. Accepted for publication in IJPAM,

Authors’ Profile:

S. Muthammai received the M.Sc. and M.Phil degree in Mathematics from Madurai Kamaraj University, Madurai in 1982 and 1983 respectively and the Ph.D. degree in Mathematics from Bharathidasan University, Tiruchirappalli in 2006. From 16th September 1985 to 12th October 2016, she has been with the Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu, India and she is currently the Principal, Alagappa Government Arts College, Karaikudi, Tamilnadu. Her main area research is Domination in Graph Theory.

Mahalakshmi R was born in Mayiladuthurai, India, in 1984. She received the B.Sc degree in Mathematics from the Bharathidasan University, Tiruchirappalli, Tamilnadu, India, in 2005, M.Sc. degree in Mathematics from the Bharathidasan University, Tamilnadu, India, in 2007, M.Phil degree in Mathematics from the Vinayaga Mission University, Tamilnadu, India, in 2009 and B.Ed. degree in Mathematics from the Bharathidasan University, Tamilnadu, India, in 2008. She has 4 years of teaching experience in various schools and colleges. She is pursuing research in the department of Mathematics at Government Arts College for Women (Autonomous), Pudukkottai, India. Her main area research is Domination in Graph Theory.