Further Results on Chromatic Number with Complementary Connected Perfect Domination Number of a Graph

G. Mahadevan, A. Iravithul Basira2 and C.Sivagnanam3

1,2 Department of Mathematics, Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul

3 Department of General Requirements, College of Applied Sciences-Ibri, Sultanate of Oman.

Email: *drgmaba2014@gmail.com, j.basiraabbas@gmail.com, choshi71@gmail.com*

Abstract: The concept of Complementary connected perfect domination number was introduced by G. Mahadevan et.al., in [5]. A subset S of V of a non trivial graph G is said to be complementary connected perfect dominating set if S is a dominating set and <V−S> is connected and has a perfect matching. The minimum cardinality taken over all complementary connected perfect dominating sets in G (CCPD-set) is called the complementary connected perfect domination number of G and is denoted by \(\gamma_{ccp} \). In [6, the authors already characterized the extremal graphs whose sum of complementary connected domination number and chromatic number upto 2n-5. Since the characterization of extremal graphs whose sum of complementary connected domination number and chromatic number equals to 2n-6 for any n > 3

Key Words: Complementary connected Perfect Domination Number, AMS Subject Classification: 05C69

1. Introduction

By a graph G = (V, E) simple undirected connected graph. The concept of Complementary connected perfect domination number was introduced by G. Mahadevan et.al., in [5]. The A subset S of V of a non trivial graph G is said to be complementary connected perfect dominating set if S is a dominating set and <V−S> has a perfect matching and connected. The minimum cardinality taken over all Complementary connected perfect dominating sets in G (CCPD-set) is called the complementary connected perfect domination number of G and is denoted by \(\gamma_{ccp} \). The minimum number of colours required to colour all the vertices in such a way that the adjacent vertices do not receive the same colour is called the chromatic number and is denoted by \(\chi \).
We use the following notations in our further discussions.

Notation 1.1: Let H be a regular graph.

a) H^k is a graph obtained from H by attaching m times an end vertex of P_k to a vertex of H.

b) $H^i (m_1, m_2, ..., m_n)$ is a graph obtained from H by attaching m_i pendant edges to the vertex v_i, $1 \leq i \leq n$.

c) $H^i (m_1 P_{k_1}, m_2 P_{k_2}, ..., m_n P_{k_n})$ is a graph obtained from H by attaching m_i times an end vertex of a path P_{k_i} on k_i vertices to the vertex v_i, $1 \leq i \leq n$.

d) $H^i (u(P_{n}, P_{m}), m_1 P_{k_1}, m_2 P_{k_2}, ..., m_n P_{k_n})$ is the graph obtained from H by attaching an end vertex of P_n and an end vertex of P_m to a vertex $u=v_i$ of H and attaching the m_i times an end vertex of P_{k_i} to the vertex v_i, $2 \leq i \leq n$.

Notation 1.2: $P_n^i (u(P_{n}, P_{m}))$ is the graph obtained from P_n by attaching an end vertex of P_n and an end vertex of P_m to an end vertex u of P_k.

Notation 1.3: $P_n^i (m_1 P_{k_1}, n_1 P_{s_1})$ is the graph obtained from P_n by attaching m_1 times an end vertex of P_{k_1} to an end vertex of P_n and by attaching n_1 times an end vertex of P_{s_1} to the other end vertex of P_n.

Notation 1.4: $P_n^i (U_n, C_s)$ is the graph by attaching one vertex of C_s and one vertex of C_s to the end vertices of P_n.

Notation 1.5: $P_n^i (m_1 P_{k_1}, C_s)$ is the graph by attaching m_1 times of P_{k_1} to an end vertex of P_n and attaching a vertex of C_s to other end vertex of P_n.

Theorem 1.6: For any graph G, $\gamma_{ccp}(G) = n$ if and only if G is a star.

Theorem 1.7: Let G be a connected graph with $\gamma_{ccp} = n - 2$ and $\chi = n - 4$. Then $\gamma_{ccp} + \chi = 2n - 6$, for any $n > 3$. If and only if G is isomorphic to $G_1 = \{C_4(P_3), C_6(P_2)\}$ $P_4, C_6, P_4(u(P_3, P_3), 0), C_6(u(P_3, P_3), 0), C_6(u(P_3, P_3), 0), C_6(u(P_3, P_3), 0)$, $P_4(2P_2), P_4(2P_2), C_6(u(P_3, P_3), 0), C_6(u(P_3, P_3), 0), C_6(u(P_3, P_3), 0), C_6(u(P_3, P_3), 0)$. $C_6(u(P_3, P_3), 0), P_4(2P_2), P_4(2P_2), C_6(3P_2, C_3), C_6(3P_2, C_3), K_4(4, 0, 0, 0), K_4(3, 1, 0, 0), K_4(2, 2, 0, 0), K_4(1, 1, 1, 1), K_4(4, 0, 0), K_4(2, 2, 0), K_4(3, 1, 0)$ and any one of the following figure 1.1.
2. Main Result

In [6], it has been already characterized the extremal graphs whose sum of complementary connected domination number and chromatic number up to $2n-5$. Since the characterization of graphs whose sum of complementary connected perfect domination number and chromatic number is equal to $2n-6$.

Theorem 2.1 Let G be a connected graph with $\gamma_{ccp} = n - 4$ and $\chi = n - 2$. Then $\gamma_{ccp} + \chi = 2n - 6$, for any $n > 3$ if and only if G is isomorphic to $K_6(2P_2)$, $K_6(1,1,0,0,0,0)$, $K_5(2P_2)$, $K_5(1,1,0,0,0)$, $K_4(P_3)$, G_i and any of the following graphs in Figure 1.2.
Proof: Let $\gamma_{cep}(G) + \chi(G) = 2n - 6$, then $\gamma_{cep} + \chi = 2n - 6$ for any $n > 3$. Then all the possible cases are (i) $\gamma_{cep} = n$ and $\chi = n - 6$, (ii) $\gamma_{cep} = n - 1$ and $\chi = n - 5$, (iii) $\gamma_{cep} = n - 2$ and $\chi = n - 4$, (iv) $\gamma_{cep} = n - 3$ and $\chi = n - 3$, (v) $\gamma_{cep} = n - 4$ and $\chi = n - 2$, (vi) $\gamma_{cep} = n - 5$ and $\chi = n - 1$, (vii) $\gamma_{cep} = n - 6$ and $\chi = n$.

Figure 1.2
The cases, (ii), (iv), (vi) \(< V \sim S > \) has odd number of vertices. Hence, it not possible to form a perfect matching. Hence in the all these cases, no graph exists. For the remaining cases, the graph exists. The case, (iii) already proved in [6].

Case (i) : \(\gamma_{ccp} = n \) and \(\chi = n - 6 \)

Let \(\gamma_{ccp} = n \), by theorem 1.3, G is a star. But for star \(\chi = 2 \) so that \(n = 8 \). Hence \(G = K_{1,7} \).

Case (ii): \(\gamma_{ccp} = n - 4 \) and \(\chi = n - 2 \)

Since \(\chi = n - 2 \), G contains a clique K on \(n = 2 \) or does not contain a clique K on \(n = 2 \) vertices.. Let G contains a clique on K= \(K_{n-2} \) vertices and let \(S= \{v_1, v_2\} \in V(G) - V(K) \). Then the induced sub graph \(<S> = \overline{K_2}, K_1\)

Sub case 1: \(<S> = \overline{K_2}\)

Let \(v_1 \) and \(v_2 \) be the vertices of \(\overline{K_2} \) (i) If \(v_1 \) or \(v_2 \) is mapped to a single vertex say \(u_1 \) of \(K_{n-2} \). (ii) If \(v_1 \) and \(v_2 \) is mapped to different vertices of \(K_{n-2} \).

a) Suppose \(K = K_{n-2} \) has even number of vertices, then \(\{v_1, v_2, u_1, u_2\} \) forms a \(\gamma_{ccp} \) set of G. Since \(\gamma_{ccp} = n - 2 \) so that \(n = 8 \) and hence \(K = K_6 \). In this case the possible graphs are \(K_6(2P_3), K_6(P_3, P_0, 0, 0), K_6(1, 1, 0, 0, 0, 0) \). If \(d(v_1) > 1 \), then we get a contradiction to the hypothesis.

b) Suppose \(K = K_{n-2} \) has odd number of vertices \(\{v_1, v_2, u_1\} \) forms a \(\gamma_{ccp} \) set of G. Since \(\gamma_{ccp} = n - 2 \) so that \(n = 7 \) and hence \(K = K_5 \). Let \(u_1 \) adjacent to \(v_1 \) of \(K_5 \) then the possible graphs are \(K_5(2P_2), K_5(P_2, P_0, 0, 0) \). If \(v_1 \) and \(v_2 \) is adjacent to \(u_1 \) \(d(v_1) = 2 \) and \(d(v_2) = 1 \), then \(G \cong G_i \). If \(d(v_1) = 3 \) and \(d(v_2) = 1 \), then \(G \cong G_2 \). If \(d(v_1) = 4 \) and \(d(v_2) = 1 \), then \(G \cong G_3 \). If \(v_1 \) and \(v_2 \) is adjacent to \(u_1 \) \(d(v_1) = 1 \), then \(G \cong G_4 \). If \(d(v_1) = d(v_2) = 2 \), then \(G \cong G_5 \).

Sub case 2: \(<S> = K_2\)

Let \(v_1 \) and \(v_2 \) be the vertices of \(K_2 \) (i) If \(v_1 \) or \(v_2 \) is mapped to a single vertex say \(u_i \) of \(K_{n-2} \). (ii) If \(v_1 \) and \(v_2 \) is mapped to different vertices of \(K_{n-2} \).

a) Suppose \(K = K_{n-2} \) has even number of vertices, then \(\{v_1, u_1\} \) forms a \(\gamma_{ccp} \) set of G. Since \(\gamma_{ccp} = n - 2 \), we have \(n = 6 \) and hence \(K = K_4 \). In case (i) the possible graphs are \(K_4(P_2), \) and if \(v_1 \) is adjacent to \(u_1 \) \(d(v_1) = 3 \), \(d(v_2) = 1 \), then \(G \cong G_i \). If \(d(v_1) = 4 \), \(d(v_2) = 1 \), then \(G \cong G_4 \). If \(v_1 \) and \(v_2 \) is adjacent to \(u_1 \) and if \(d(v_1) = d(v_2) = 2 \), then
G \cong G_7. If d(v_1) = 3, d(v_2) = 2, then G \cong G_10. If d(v_1) = 4, d(v_2) = 2, then G \cong G_9.

If v_1 is adjacent to u_1 and v_2 is adjacent to u_2, d(v_1) = d(v_2) = 2, then G \cong G_{14}. If d(v_1) = 3, d(v_2) = 2, then G \cong G_{11}. If d(v_1) = 4, d(v_2) = 2, then G \cong G_{12}. If d(v_1) = d(v_2) = 3, then G \cong G_{13}.

b) Suppose K = K_{n-2} has an odd number of vertices, then \{v_1,u_j,u_k\} forms a \gamma_{ccp}-set of G. Since \gamma_{ccp} = n - 2, we have n = 7 and hence K = K_5. Let u_j be adjacent to v_1 of K_5 then the possible graph is K_5(P_3). If v_1 is adjacent to u_j and d(v_1) = 3, then G \cong G_{15}. If d(v_1) = 4, then G \cong G_{16}. If d(v_1) = 5, then G \cong G_{17}. If v_1 is adjacent to u_1 and u_2 and d(v_1) = d(v_2) = 2, then G \cong G_{18}. If v_1 is adjacent to u_1 and v_2 is adjacent to u_2 and d(v_1) = d(v_2) = 2, then G \cong G_{19}. If d(v_1) = 3, d(v_2) = 2, then G \cong G_{20}. If d(v_1) = 4, d(v_2) = 2, then G \cong G_{21}. If d(v_1) = d(v_2) = 3, then G \cong G_{22}.

Case (iii): \gamma_{ccp} = n-6 and \chi = n.

Since \gamma = n, G is a complete graph. If n is even then \gamma_{ccp} = 2 which gives n = 8 and hence G = K_8. If n is odd then \gamma_{ccp} = 1 which gives n = 7 and hence G = K_7. The converse is obvious.

3. Conclusion

In this paper, we characterized the concept of complementary connected perfect domination number and chromatic number equals to 2n-6 for any n > 3 of a graph. The authors are also characterized the sum of complementary connected perfect domination number and chromatic number equals to 2p-7, 2p-8 which will be report in the subsequent papers.

Acknowledgement:

This Research work was supported by University Grants Commission, New Delhi under Departmental Special Assistance, GRI-DU.

References:

Further Results on Chromatic Number with Complementary Connected Perfect Domination Number of a Graph

Authors' Profile:

Dr. G. Mahadevan, M.Sc., M.Phil., M.Tech., Ph.D., is having 21 years of teaching experience in various colleges and Universities including Head of the Dept. of Mathematics at Anna University, Tirunelveli, Tirunelveli Region, Tirunelveli. Currently he is working as Asst. Professor in the Dept of Mathematics Gandhigram Rural Institute-Deemed University, Gandhigram. He Published more than 60 research Papers in Various International/National Journals. Three scholars have been awarded their Ph.D., under his guidance and many of them are doing their Ph.D., degree under his guidance. Recently he received Best Faculty Award-Senior Category in Mathematics by former UGC Vice Chairman. He also received Dr. Abdul Kalam Award for Scientific Excellence- 2015.

Mrs. A. Iravithul Basira. M.Sc., M.Phil., completed B.Sc., degree in Mathematics at M.V.M. Government Arts and Science college for women, Dindigul and completed M.Sc., in Jamal Mohamed college - Autonomous, Trichy. She also did her M. Phil degree in Gandhigram Rural Institute, Gandhigram. She also worked in Jamal Mohamed College from the year 2008 to 2011. To her credit, she has Published four paper in Various International/National Journals.

Dr. C. Sivagnanam has two decades of experience in teaching and research. He was working in various colleges and universities in India, Bahrain and Oman. Presently he is working at Ibri College of Applied Sciences, Sur-Sultanate of Oman. He has published more than 70 papers in Various International/National Journals.